Carbon, Climate Policy, and the New Alchemy
--
By Lee Epstein
The Problem, in a Nutshell
Unless you live under a rock, you know that most reputable geophysical scientists around the world, especially climatologists and those who study the near-Earth atmosphere, will tell you they are very worried about carbon.
The element, of course, is ubiquitous, and a basic building block of life on Earth. In certain forms, such as carbon dioxide (CO2), carbon has a dual personality. CO2 is essential to plant photosynthesis — the process by which plants turn sunlight into chemical energy by synthesizing sugars from CO2 and water, releasing oxygen in the process. These sugars are stored in carbohydrate molecules, and then used to promote plant growth. Thus CO2, a critical component of photosynthesis, helps grow our food and forests and beneficially leads to the production of the oxygen we breathe.
But the dark side of CO2’s personality is as frightening as carbon is necessary to life. This is because when there is too much of this good thing, it builds up in the atmosphere, producing a “greenhouse effect.” Together with other greenhouse gases (GHGs) like methane and oxides of nitrogen that produce ozone, CO2 acts like a greenhouse’s glass roof, trapping the heat produced by sunlight cast on the earth.
According to the best peer-reviewed science from around the world, which uses direct observational evidence as well as empirically informed, complex computer models, we are now witness to a changing climate largely caused by human activity — and that change is accelerating at an ever-faster pace.
Impacts and Consequences
Indeed, the signs are everywhere, from a quickening of sea-ice melt in certain polar and arctic regions, to glacial retreat, and the speed of ambient air and water temperature changes over time (based on historical, geological, and ice-core records). There is some evidence that catastrophic weather-related events may be accelerating. Global average sea level rise since 1900 is about 7–8 inches, and oceans have become warmer and more acidic due to CO2 uptake. Geographic species shifts are now occurring, including (in the Atlantic) major fish stocks such as silver and red hake, alewife, Atlantic cod…